
PyTorch Lightning
Amin Saied



In the beginning…

• Iterate through data

• Forward pass

• Backward pass

• Handle gradients

• Log metrics

• Validation loop



What’s the problem?
Fundamental issue is that this single loop combines disparate notions:

• Model code
• Dataloaders
• Training

• Including logging
• Validation

• Applying torch.no_grad()
• Optimization
• Infra

• E.g., Distributed training, mixed-precision,
• deepspeed, ORT, …

Example: Distributed training with DDP

• Distributed dataloaders
• Init process group
• Wrap model in DDP
• Distributed checkpointing
• Check LR schedulers handle global step
• …



Hugginface transformer.Trainer()

• Convenient out-of-the-box trainer with 
flags to control basic use cases

Drawbacks

• Tightly coupled to transformers library

• Over time these trainer's become 
unwieldy black boxes of tech debt

• For example, the Huggingface trainer is 
>2500 loc with ~500 if/else conditions.

https://github.com/huggingface/transformers/blob/master/src/transformers/trainer.py

https://github.com/huggingface/transformers/blob/master/src/transformers/trainer.py


Demo



Debugging

• Fast Dev Run

• Runs a “unit test” by running 1 training batch and 1 validation batch.
• Detect bugs in the training/validation loop without having to wait for a full 

epoch

• Inspect Grad Norms

• Track the L2-norm of each weight matrix



Debugging

• Performance Profiling



Auto LR Finder

• Lightning implements an automated learning rate finder based on [1]

[1] - Cyclical Learning Rates for Training Neural Networks by Leslie N. Smith

https://arxiv.org/abs/1506.01186


Auto LR Finder

• Comparison with 
Huggingface default of 
1e-5

• Red=1e-5

• Blue=6.9e-5



Accelerators

• Mixed precision

• Native DeepSpeed support:

Medium blog announcement

https://medium.com/pytorch/pytorch-lightning-v1-2-0-43a032ade82b

